8,073 research outputs found

    Wireless powered cooperation-assisted mobile edge computing

    Get PDF
    This paper studies a mobile edge computing (MEC) system in which two mobile devices are energized by the wireless power transfer (WPT) from an access point (AP) and they can offload part or all of their computation-intensive latency-critical tasks to the AP connected with an MEC server or an edge cloud. This harvest-then-offload protocol operates in an optimized time-division manner. To overcome the doubly near-far effect for the farther mobile device, cooperative communications in the form of relaying via the nearer mobile device is considered for offloading. Our aim is to minimize the AP's total transmit energy subject to the constraints of the computational tasks. We illustrate that the optimization is equivalent to a min-max problem, which can be optimally solved by a two-phase method. The first phase obtains the optimal offloading decisions by solving a sum-energy-saving maximization problem for given an energy transmit power. In the second phase, the optimal minimum energy transmit power is obtained by a bisection search method. Numerical results demonstrate that the optimized MEC system utilizing cooperation has significant performance improvement over systems without cooperation

    Effects of triptolide, an alcohol extract of a Chinese herb, Thunber God Vine, on peripheral blood T cell proliferation and B cell immunoglobulin production in rheumatoid arthritis (RA)

    Get PDF
    published_or_final_versio

    Effects of triptolide, an alcohol extract of a Chinese herb, Thunder God Vine, on peripheral blood mononuclear cell protein synthesis and signal transduction in rheumatoid arthritis(RA)

    Get PDF
    published_or_final_versio

    Secure Localization and Velocity Estimation in Mobile IoT Networks with Malicious Attacks

    Get PDF
    IEEE Secure localization and velocity estimation are of great importance in Internet of Things (IoT) applications and are particularly challenging in the presence of malicious attacks. The problem becomes even more challenging in practical scenarios in which attack information is unknown and anchor node location uncertainties occur due to node mobility and falsification of malicious nodes. This challenging problem is investigated in this paper. With reasonable assumptions on the attack model and uncertainties, the secure localization and velocity estimation problem is formulated as an intractable maximum a posterior (MAP) problem. A variational-message-passing (VMP) based algorithm is proposed to approximate the true posterior distribution iteratively and find the closed-form estimates of the location and velocity securely. The identification of malicious nodes is also achieved in the meantime. The convergence of the proposed VMP-based algorithm is also discussed. Numerical simulations are finally conducted and the results show the VMP-based joint localization and velocity estimation algorithm can approach the Bayesian Cramer Rao bound and is superior to other secure algorithms

    Robust Localization for Mixed LOS/NLOS Environments With Anchor Uncertainties

    Get PDF
    Localization is particularly challenging when the environment has mixed line-of-sight (LOS) and non-LOS paths and even more challenging if the anchors’ positions are also uncertain. In the situations in which the parameters of the LOS-NLOS propagation error model and the channel states are unknown and uncertainties for the anchors exist, the likelihood function of a localizing node is computationally intractable. In this paper, assuming the knowledge of the prior distributions of the error model parameters and that of the channel states, we formulate the localization problem as the maximization problem of the posterior distribution of the localizing node. Then we apply variational distributions and importance sampling to approximate the true posterior distributions and estimate the target’s location using an asymptotic minimum mean-square-error (MMSE) estimator. Furthermore, we analyze the convergence and complexity of the proposed variational Bayesian localization (VBL) algorithm. Computer simulation results demonstrate that the proposed algorithm can approach the performance of the Bayesian Cramer-Rao bound (BCRB) and outperforms conventional algorithm

    Robust Integrated Data and Energy Transfer Aided by Intelligent Reflecting Surfaces: Successive Target Migration Optimization Towards Energy Sustainability

    Get PDF
    Intelligent reflecting surfaces (IRSs) can actively adjust the wireless environment. However, accurate channel estimation on IRS-aided communication systems is difficult to obtain. Therefore, we study a robust beamforming design for an IRS-aided integrated data and energy transfer (IDET) with imperfect channel state information (CSI). Against the uncertain channel estimation error, we robustly design the transmit beamformers of the transmitter and the passive reflecting beamformer of the IRS to minimize the transmit power by satisfying both the wireless data transfer (WDT) and wireless energy transfer (WET) requirements for realising energy-sustainability in 6G. A successive target migration optimization (STMO) algorithm is proposed to obtain a robust design. The transmit covariance matrices are optimized by relaxing rank-one constraints, when a passive reflecting beamformer is given. Then, the target to minimize the transmit power is migrated to maximize the QoS requirements of energy users due to the fixed transmit power. A local optimal reflecting beamformer is obtained for improving the attainable WET performance, when the transmit covariance matrices are given. Finally, we prove that the rank-one transmit beamformers can always be found, which have the same WET and WDT performance as the transmit covariance matrices. The numerical results demonstrate the advantage of our design

    Unary Coding Design for Simultaneous Wireless Information and Power Transfer with Practical M-QAM

    Get PDF
    Relying on the propagation of modulated radio-frequency (RF) signals, we can achieve simultaneous wireless information and power transfer (SWIPT) to support low-power communication devices. In this paper, we proposed a unary coding based SWIPT encoder by considering a practical M-QAM. Markov chains are exploited for characterising coherent binary information source and for modelling the generation process of modulated symbols. Therefore, both mutual information and the average energy harvesting performance at the SWIPT receiver are analysed in semi-closed-form. With the aid of the genetic algorithm, the sub-optimal codeword distribution of the coded information source is obtained by maximising the average energy harvesting performance, while satisfying the requirement of the mutual information. Simulation results demonstrate the advantage of the SWIPT encoder. Moreover, a higher-level unary code and a lower-order M-QAM results in higher WPT performance, when the maximum transmit power of the modulated symbol is fixed

    Wideband Waveforming for Integrated Data and Energy Transfer: Creating Extra Gain Beyond Multiple Antennas and Multiple Carriers

    Get PDF
    When wideband signals propagate in a rich-scatterer environment, we obtain abundant resolvable multiple transmission paths to form a number of virtual antennas. Therefore, substantial spatial gain can be attained by carefully waveforming in all these resolvable transmission paths without additional antennas. This resultant spatial gain is then exploited for improving the performance of integrated-data-and-energy-transfer (IDET) from a single transmitter to multiple receivers. We aim to maximise the downlink fair-throughput and sum-throughput, while satisfying the energy harvesting requirements by jointly optimising the waveformers at the transmitter and the power splitters at the receivers. A low-complexity fractional-programming (FP) based alternating algorithm is proposed to solve these non-convex optimisation problems. The non-convex wireless energy transfer (WET) constraints are transformed to be convex with a modified quadratic transform (MQT) method. As a result, the stationary points for both the fair-throughput and the sum-throughput maximisation problems are obtained. The numerical results demonstrate the advantage of our proposed algorithm over a minimum-mean-square-error (MMSE) scheme, a zero-forcing (ZF) scheme and a time-reversal (TR) scheme. Simulation results show that the wireless data transfer (WDT) performance of our scheme outperforms the single-input-single-output orthogonal-frequency-division-multiple-access (SISO-OFDMA) when the output direct current (DC) power requirement is high. When we have a practical individual subcarrier power constraint, the WDT performance of our scheme outperforms multiple-input-single-output orthogonal-frequency-division-multiplex-access (MISO-OFDMA)

    Numerical simulation of earthquake-induced liquefactions considering the principal stress rotation

    Get PDF
    Dynamic loadings such as earthquake loadings can generate considerable principal stress rotation (PSR) in the saturated soil. The PSR without changes of principal stress magnitudes can generate additional excess pore water pressures and plastic strains, thus accelerating liquefaction in undrained conditions. This paper simulates a centrifuge model test using the fully coupled finite element method considering the PSR. The impact of PSR under the earthquake loading is taken into account by using an elastoplastic soil model developed on the basis of a kinematic hardening soil model with the bounding surface concept. The soil model considers the PSR by treating the stress rate generating the PSR independently. The capability of this soil model is verified by comparing the numerical predictions and experimental results. It also indicates that the PSR impact can not be ignored in predictions of soil liquefaction

    In vitro characterisation of immunosuppressive activity of triptolide

    Get PDF
    published_or_final_versio
    • …
    corecore